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Abstract

Approximate linearisedmodels can be important for preliminary design of floating wind turbines,
but their value depends on how well they approximate the real-world non-linear behaviour. This
paper focuses on the non-linear inertial coupling between motion of the floating platform and
the blade dynamics, using a simplified model to demonstrate how the inertial coupling works,
and systematically studying the linearity of the dynamic blade response to different directions,
amplitudes and frequencies of motion. Simplified equations of motion are derived and approx-
imately solved analytically, showing that the blade response contains harmonics at a range of
frequencies, some linear and some non-linear in the amplitude of the platform motion. Com-
parison to numerical simulations shows that the analytical results were qualitatively useful but
inaccurate for large platform motions. Because of the multiple harmonics in the response, there
are more combinations of rotor speeds and platform motions leading to large resonant blade
responses and non-linear behaviour than might be expected. Overall, for realistically low rotor
speeds and platform frequencies (below 20 rpm and 0.2Hz), non-linear inertial loading due to
platform motion should be negligible. The implications of this work for the use of linearised
structural models and the relevance of scale model testing are discussed.

Keywords: floating wind turbines, wind energy, non-linearity, frequency-domain modelling,
structural dynamics, resonance.

1. Introduction

In preliminary design, approximate linearised models are attractive because they allow a
broad range of designs and conditions to be explored – but they are only useful to the extent
that their conclusions apply to the real-world non-linear system. The structural dynamics of
a floating wind turbine – with flexible blades, in a rotating rotor, on a moving platform – are
certainly complex and non-linear in theory, but is the non-linearity important in practice?

Linearised methods have been used for modelling stall-regulated turbines [1, 2], offshore
turbines [3], and initial design of foundations [4] and blades [5]. For floating turbines, they
have been used to study a wide space of possible concepts [6] and to test the effect of wave
energy converters on spar platforms [7].

There are many sources of non-linear behaviour in floating wind turbines, from the aero-
dynamic and hydrodynamic loading to the control system behaviour. The importance of some
of these have been studied. Non-linear hydrodynamics have been found to be negligible under
some conditions [8, 9], while other non-linearities are more significant but can be approximated,
such as in the aerodynamic loads and the control system dynamics [10], and viscous drag forces
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Figure 1: Simplified model of the floating wind turbine, showing types of platform motion.

on submerged structures (e.g. [11]). However, the conditions under which non-linearity in the
structural dynamics is important have not been established.

In this paper we propose to focus specifically on one part of this, the non-linear inertial
coupling between the motion of the platform and the blades. We use a simplified model of a
floating wind turbine to systematically study the dynamic blade response to different directions,
amplitudes and frequencies of prescribed platform motion. Previous preliminary results [12] are
extended to cover all directions of platformmotion, and identify the conditions under which non-
linearity in the structural dynamics is likely to be significant. Specifically, the contributions of this
paper are as follows. First, simplified equations are derived for the flapwise and edgewise blade
response to each rigid-body platform motion, and approximate analytical solutions are found,
which give qualitative insight into the non-linear response (Section 2). This predicts the blade
responses will contain harmonics at a range of frequencies, some linear and some non-linear in
the amplitude of the platform motion. Then, the response of the simplified non-linear model to
each platform motion is numerically simulated over a representative range of frequencies and
amplitudes, to compare against the analytical solutions, showing that they were qualitatively
useful but inaccurate for large platform motions (Section 3). Summarising the combinations of
rotor speeds and platform motions that lead to large resonant blade responses and non-linear
behaviour shows that there are more than might be expected because of the multiple harmonics
in the forcing (Section 4). Finally, the implications of this work for the use of linearised structural
models and the relevance of scale model testing are discussed (Sections 5–6).

2. Simplified model

To isolate the effect of platform motion on the structural dynamics of the wind turbine, a
simplified model is set up of a flexible turbine subject to prescribed motion in one of its 6 degrees
of freedom: surge, sway and heave (translation in the x , y and z directions) and roll, pitch and
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Figure 2: The simplified model of a floating wind turbine showing the flapwise blade response to platform pitching
motion. The coordinates are the platform pitch angle φ, the rotor azimuth angle θ , the blade flapwise deflection α and
the blade edgewise deflection β .

yaw (rotation about the x , y and z axes respectively). The flexible blades are represented by
rigid beams hinged to the hub in the flapwise and edgewise directions, with hinge stiffnesses
chosen to reproduce the first flapwise and edgewise natural frequencies of the blade (Figure 1).
The flexibility of the tower is neglected and the rotor speed is assumed constant.

In this section the equations of motion of this simplified non-linear model are derived, before
finding an approximate analytical solution for the blade response to prescribed platform motion.

2.1. Equations of motion – large rotations

The equations of motion are derived separately for flapwise and edgewise deflection of the
blades, leading to two independent one-degree-of-freedom equations. This is an appropriate
simplification if the deflections are small, but neglects the possibility of non-linear coupling be-
tween these two motions.

The particular case of platform pitch motion, shown in Figure 2, will be used as an example.
In this case there are four coordinates, which are labelled in the figure. The rotor speed θ̇(t)
and platform pitch angle φ(t) are prescribed, leaving the blade deflection angle α(t) or β(t) as
the only degree of freedom. The equations of motion are derived by first finding the kinetic and
potential energy functions, and then using Lagrange’s equations to find the equations of motion
for general platform motion, before substituting for the particular case of harmonic platform
motion, with amplitude A and frequency ω, and constant rotor speed θ(t) = Ωt . The derivation
is illustrated for the case of platform pitching motion in Appendix A, and the resulting equations
for all types of motion are given in Appendix B. In total there are 12 equations of motion, for the
flapwise and edgewise responses to the 6 types of platform motion (Figure 1).
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2.2. Equations of motion – small rotations

It is useful to simplify the full equations of motion by assuming small blade deflections and
small platform rotations. Specifically, terms are kept to first order in α , β , and the platform
motions. Again using the case of pitching motion of the platform as an example, Appendix A.5
shows the derivation of the simplified equations of motion. The result is an equation in which
individual contributions can be more easily identified:

α̈ +

[
ω2
f︸︷︷︸

flap
stiffness

+ Ω2

︸︷︷︸
centrifugal

stiffness (rotor)

+ φ̇2

(
λh cosθ +

1

2
cos 2θ − 1

2

)
︸                               ︷︷                               ︸

centrifugal stiffness
(platform rotation)

− λд cosθ︸  ︷︷  ︸
gravity
stiffness

]
α

= λдφ︸︷︷︸
out-of-plane
gravity load

+2φ̇Ω sinθ︸     ︷︷     ︸
Coriolis
force

− φ̈ (λh + cosθ)︸           ︷︷           ︸
platform acceleration

force

(1)

which after again expanding the constant rotor speed, θ(t) = Ωt , and the harmonic pitching
motion, φ = A sinωt , becomes:

α̈ +
(
p2
f − λд cosΩt

)
α = λA

(
д + hω2

)
sinωt

+

(
Aω

2

) [
(ω + 2Ω) sin(ω + Ω)t + (ω − 2Ω) sin(ω − Ω)t

]
− α

(
Aω

2

)2 {
2λh cosΩt + cos 2Ωt − cos 2ωt − 1

+ λh [cos(2ω + Ω)t + cos(2ω − Ω)t ]

+
1

2
[cos 2(ω + Ω)t + cos 2(ω − Ω)t ]

}
(2)

where all terms containing the platform amplitude A have been moved to the right-hand side,
and the flapwise and edgewise natural frequencies including centrifugal stiffening are written
as

pf =
√
ω2
f + Ω2 (3a)

pe = ωe (3b)

The equation of motion is non-linear due to the interactions between the response α and terms
related to the forcing A sinωt . The corresponding simplified equations for the other types of
platform motion are given in Appendix C.

2.3. Perturbation solution

The equations of motion derived above may be solved numerically, or with further approxi-
mation they may be solved analytically. In this section the perturbation method is used to find
an approximate solution.

The equations of motion for small deflections, such as Equation (2) above for platform pitch
and Equations (C.2)–(C.6) in Appendix C for the other platform motions, have a general form
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with a force appearing on the right-hand side of the equation dependent on the current blade
deflection:

ẍ(t) + p2x(t) = f (t) + x(t)д(t) (4)

where x is the blade deflection response (α or β), p is the blade’s natural frequency including
any centrifugal stiffening (pf or pe), and f (t) and д(t) are the parts of the applied force which
are respectively independent of and dependent on x(t). The method of perturbation [13] can
provide an approximate solution to a non-linear differential equation. The first step is to expand
the response variable in a power series with respect to some parameter, say the amplitude of the
platform motion A:

x(t) = x0(t) +Ax1(t) +A2x2(t) + . . . (5)

Similarly, the applied forces can be divided into parts by the order of A, so that f (t) = f0(t) +
Af1(t) +A2 f2(t) + . . . and equivalently for д(t). Then, substituting these expansions into Equa-
tion (5) and equating powers of A produces a series of linear differential equations:

ẍ0(t) + p2x0(t) = f0(t) (6a)

ẍ1(t) + p2x1(t) = f1(t) + д1(t)x0(t) (6b)

ẍ2(t) + p2x2(t) = f2(t) + д2(t)x0(t) + д1(t)x1(t) (6c)

ẍ3(t) + p2x3(t) = f3(t) + д3(t)x0(t) + д2(t)x1(t) + д1(t)x2(t) (6d)
...

In this way the original non-linear equation has been transformed into a series of linear differ-
ential equations; these can be solved in turn to produce successive approximations to the full
non-linear response. In theory, for the power series expansion (5) to converge, the perturbation
parameter A must be small. In practice useful qualitative results may be obtained even with
larger values of A but the amplitudes of the harmonics in the perturbation solution will not be
accurate.

Because the lower-order solution becomes part of the forcing term for the higher-order so-
lutions, when the blade response consists of multiple harmonics these will cascade through the
iterations of the method. New harmonics at the sum and difference frequencies of the previous
harmonics appear at every step (Figure 3), and in general the blade response to platform motion
at frequency ω contains many harmonics at frequencies of the form aω +bΩ, where a and b are
positive or negative integers.

2.3.1. Damping
Damping has a strong influence on the response near resonances, so it is important to in-

clude in the approximate results. Explicitly including damping in the perturbation equations,
however, is unwieldy due to the need to track phase shifts and damping factors through each
iteration. Instead damping is added by modifying the final equations in a similar manner to the
‘correspondence principle of linear viscoelasticity’ [14].

In the model, torsional springs at the root of each blade represent the first blade bending
mode. If torsional viscous dampers were added in parallel with the torsional springs, the total
force would be kx + cẋ , where k is the stiffness and c is the damping. Under harmonic motion,
x = Xeiωt , the force is (k + ciω)Xeiωt , which is equivalent to a spring of complex stiffness
k(1 + i2ηω/ωn), where η is the damping coefficient and ωn is the natural frequency

√
k/m.

Therefore, to account for viscous damping, it is sufficient to replace every occurrence of the
undamped natural frequency ω2

n with

ω2
n + i2ηωωn =

k(1 + i2ηω/ωn)

m
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Figure 3: Development of harmonics from 1st- to 3rd-order solution for the case of the flapwise response to platform
pitch. The harmonics which make up the 1st-order response are shown in the top row. Whenmultiplied by the non-linear
coefficients д2(t ), new harmonics at the sum and difference frequencies are created.

The level of damping is set by the damping coefficient ζ . Modelling the specific causes of
damping, such as structural and aerodynamic damping effects, is outside the scope of this paper.

2.3.2. Example: flapwise response to platform pitch motion
The flapwise equation of motion for platform pitch motion will be used to illustrate the

method of perturbation. The equation of motion (2) can be written concisely as

α̈ + p2
f α = Af1(t) +A2д2(t)α (7)

Then substitution of a power series (5) for α leads to a series of linear equations like Equa-
tions (6):

α̈0 + p2
f α0 = 0 (8a)

α̈1 + p2
f α1 = f1(t) (8b)

α̈2 + p2
f α2 = α0д2(t) (8c)

α̈3 + p2
f α3 = α1д2(t) (8d)

...

These linear equations can be solved in turn to give successive approximations to the solution of
the original non-linear equation.

The zeroth-order equation (8a) describes free vibration of the blade at a frequency pf . Damp-
ing will, although not shown explicitly, cause this free vibration to disappear and in steady-state,

α0 = 0 (9)
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The first-order equation (8b), if f1(t) is written out in full, becomes

α̈1 + p2
f α1 = λ

(
д + hω2

)
sinωt

+
ω (ω + 2Ω)

2
sin(ω + Ω)t

+
ω (ω − 2Ω)

2
sin(ω − Ω)t

for which the forced vibration solution is

α1 = Kω sinωt + K+ sin(ω + Ω)t + K− sin(ω − Ω)t (10)

where

Kω =
λ
(
д + hω2

)
ω2
f + Ω2 − ω2

K+ =
(ω
2

) ω + 2Ω

ω2
f − ω2 − 2ωΩ

K− =
(ω
2

) ω − 2Ω

ω2
f − ω2 + 2ωΩ

This shows that the linear part of the solution consists of three harmonics: at the original forcing
frequency ω, and also at ω ± Ω. This is due to the equation of motion being periodic in Ω. The
presence of multiple harmonics in the response of rotating blades is well known; see for example
ref. [15].

Substituting the zeroth-order solution (9) into the second-order equation (8c) shows that

α2 = 0 (11)

Substituting the first-order solution (10) into the third-order equation (8d) gives

α̈3 + p2
f α3 = −

(ω
2

)2 [
Kω sinωt + K+ sin(ω + Ω)t + K− sin(ω − Ω)t

]
×

×
[
λh cos+(2ω ± Ω)t +

1

2
cos+(2ω ± 2Ω)t

+ 2λh cosΩt + cos 2Ωt − cos 2ωt − 1
]

(12)

where cos+ is defined in equation (C.1).
From this the solution for α3 can be found, but it includes so many harmonic terms at com-

binations of ω and Ω that it is not useful to write it out here.
Finally, the total approximate response to third order is

α(t) = Aα1(t) +A3α3(t) (13)

That is, to third order, the flapwise response to platform pitch motion should include three linear
harmonics at ω and ω ± Ω, and multiple non-linear harmonics which scale with the cube of the
platform motion amplitude. The approximate response determined from this procedure will be
compared in the next section to the solution of the original non-linear equations.

3. Numerical results

The analytical results found in Section 2 give a useful qualitative understanding of non-
linear components of the blade response, but depend on a series of approximations. In this
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Table 1: Blade properties for numerical calculations (NREL 5MW turbine)

Blade length 63m

Flapwise natural frequency 0.68Hz
Edgewise natural frequency 1.08Hz

First moment of mass I1 363219 kgm
Second moment of mass I2 11753 580 kgm2

section numerical integration of the original equations of motion (Section 2.1) is used to check
the accuracy of the analytical results and present a representative range of numerical results.

For numerical calculations, the blade properties and tower height were taken from the OC3-
Hywindmodel [16], as shown in Table 1. For simplicity, damping is set at 2% of critical damping
throughout, as actual damping varies significantly depending on the aerodynamic conditions.

Numerical simulations were run for each type of platform motion independently, for a range
of amplitudes A, frequencies ω, and rotor speeds Ω. Amplitudes of platform motion up to 21m
and 19° are included. The frequency range is intended to cover the main excitation frequencies
from wind and wave loading. Using the Pierson-Moskowitz or JONSWAP spectra [17], most
wave energy lies within the range 0.02Hz to 0.40Hz, while using the IEC edition 3 Kaimal
wind spectrum [18], wind energy lies below 0.12Hz. Therefore frequencies up to 0.4Hz are
considered. A range of rotor speeds from 0 rpm to 20 rpm is considered, which encompasses the
operation of current large wind turbines. Note that the although largest amplitudes of motion
will not occur in practice except at the lowest frequencies, for clarity of presentation the results
are calculated and plotted for a grid of values which covers all combinations.

Although the main wind and wave excitation frequencies are covered, there are some other
sources of loading that could fall outside this range. Second-order wave loads can excite large
low-frequency resonant motions of the platform, but the frequencies are so low this is unlikely to
cause significant inertial loading on the blades. Second-order effects can also cause wave loading
above the wave-energy frequency band, potentially exciting resonance of tension-leg platforms
at higher frequencies. Rotational sampling of turbulence [18] causes aerodynamic loads on the
platform at multiples of the rotor speed, also potentially leading to higher frequencies of platform
motion. However, these effects are not considered further here.

3.1. Numerical solution

For each type of motion, the equation was integrated using the odeint function of Scipy [19].
To ensure non-linear behaviours were visible, the initial conditions were slightly perturbed from
the origin. The equations were integrated for several periods until initial transients had died
away, and the spectra then calculated from the remaining part of the simulation.

For example, Figure 4 shows a spectrum of the flapwise blade response for one particular
set of conditions, and also the contour plot formed by combining response spectra for many
frequencies of platformmotion. Clearly the response contains many regularly-spaced harmonics,
consistent with the prediction of the perturbation analysis of harmonics with frequencies of the
form aω + bΩ: there are sets of parallel lines, corresponding to different values of b, and there
are multiple sets with different slopes, corresponding to different values of a. However, Figure 4
uses a logarithmic scale to show the structure of the response: although many harmonics are
present, most of them are very small.

The derivation of the equations of motion and their numerical solution was verified by com-
parison to simulations using a multi-body dynamics code mbwind [20] and, in a few cases, the
commercial wind turbine code Bladed [21]. More details are given in ref. [22].
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Figure 4: Simulation results showing the many harmonics present in the flapwise blade response to platform pitching
motion of ±11°. The rotor speed Ω is 10 rpm. p indicates the blade natural frequency. The lines labelled ω and 3ω
show harmonics with frequencies equal to the platform motion frequency and at 3× the platform motion frequency
respectively.
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Figure 5: First- and third-order perturbation results for the ω component of the flapwise response to platform pitch
motion, compared to non-linear simulation results.
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Figure 6: First- and third-order perturbation results for the ω −Ω component of the flapwise response to platform pitch
motion, compared to non-linear simulation results.

ω = 0.1 Hz 0.2 Hz 0.3 Hz 0.4 Hz 0.5 Hz

Rotor speed:
10 rpm

0.6 Hz

0.00
0.25
0.50
0.75

Am
pl
itu

de
of

ω
+
Ω
co

m
po

ne
nt

20 rpm

0 10 20
Pitch amplitude [deg]

30 rpm

Non-linear simulation Linear approx. Cubic approx
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harmonic when ω = 0.58Hz and Ω = 15 rpm.

3.2. Comparison of perturbation and numerical results

Figures 5–7 show a selection of results from the perturbation analysis (Equation 13) for
various values of the rotor speed Ω and platform pitching frequency ω. The three figures show
the amplitude of three harmonics in the response, atω,ω−Ω andω+Ω. The analysis was carried
out to third order in the platform motion amplitude, so both first- and third-order estimates of
the response are shown. The non-linear results are also shown for comparison.

For small amplitudes, all the results agree, as expected. For larger amplitudes, generally the
non-linear results increase less quickly than the linear approximation. In some cases the third-
order approximation shows the same behaviour, but in others it appears to be worse than the
first-order approximation.

Part of the difference between the non-linear and the perturbation results is due to the use
of the approximate small-angle equations of motion, as well as the perturbation approximation
itself. This is illustrated in Figure 8.

Generally, although the perturbation analysis can give an interesting insight into the blade
dynamics, it is not suitable for describing the blade response for large-amplitude motion of the
platform. The rest of this section focuses on the numerical results only.

3.3. Structure of harmonics in response to different platform motions

Figures 9–15 present results for both the flapwise and edgewise responses to all types of
platform motion. In each case the rotor speed is 5 rpm, which is 0.083Hz. This determines the
horizontal spacing of the harmonics in the figures; the value is arbitrarily chosen to give a clear
result. The plots show transfer functions from platform motion amplitude to blade response,
and each plot shows both a large- and a small-amplitude case, giving a simple indication of non-
linearity. The natural frequency of the blade is marked by an arrow at the edge of each plot.
Note that unlike Figure 4, the amplitudes are shown on a linear scale.

The flapwise responses (Figures 9–11) show that surge motion causes a blade response at fre-
quency f = ω, the frequency of the platform motion, while yaw motion causes a blade response
at ω ± Ω. The response to pitch motion contains harmonics at all of these frequencies, which is
expected since from the point of view of the rotor centre, pitch is a combined rotation (like yaw)
and translation (like surge) motion. By comparing the small- and large-amplitude subplots, it
can be seen that these flapwise responses are linear in the amplitude of platform motion.
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Figure 9: Flapwise response to platform surge motion. The response occurs purely at the forcing frequency ω , and is
linear. p indicates the natural frequency.
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Figure 10: Flapwise response to platform pitch motion. There is some response at ω ± Ω, but most at the forcing
frequency ω . All harmonics are linear.
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Figure 11: Flapwise response to platform yaw motion. There is no response at the forcing frequency ω (shown by the
dashed line), only at ω ± Ω. Both harmonics are linear.
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Figure 12: Edgewise response to platform heave motion. There is no response at the forcing frequency ω (shown by the
dashed line), only at ω ± Ω. Both harmonics are linear.
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Figure 13: Edgewise response to platform roll motion. There is a linear response at ω and ω ±Ω. Additional non-linear
responses at Ω and 2ω ± Ω are visible for larger amplitudes (on either side of the dashed line at 2ω).
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Figure 14: Edgewise response to platform pitch motion. The response is entirely non-linear, mostly at 2ω ± Ω and Ω

but also 2ω ± 2Ω and 2Ω. The dashed guideline shows where the 2ω harmonic would be.
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Figure 15: Edgewise response to platform yaw motion. The response is entirely non-linear, at 2ω ± 2Ω and 2Ω. The
dashed guideline shows where the 2ω harmonic would be.

Platform heave and roll motions both cause linear edgewise blade responses (Figures 12 &
13). Heave motion causes a response at ω ± Ω, while roll motion causes a response at both
ω ± Ω and ω. Although the two linear harmonics continue to dominate the response to heave
motion even at the larger amplitudes, non-linear responses to roll motion are visible on the right
of Figure 13: these appear at Ω and at 2ω ± Ω. The response to sway motion (not shown) is
identical to heave, since both are a translational motion in the plane of the rotor. The responses
would of course differ in a more complete model which accounted for tower flexibility.

The edgewise responses to platform pitch and yaw are purely non-linear (Figures 14 & 15),
because the only inertial loading on the blades in these cases is the centrifugal force due to the
rotation of the platform in pitch or yaw (as opposed to the centrifugal force due to the rotor
rotation), which is proportional to the squared amplitude of the motion. Yaw motion causes
responses at 2Ω and 2ω ± 2Ω; these frequencies are also present in the response to pitch motion,
along with larger harmonics at Ω and 2ω ± Ω.

Some types of platform motion produce no flapwise or edgewise response: surge motion
produces no edgewise response, and roll and heave motion produce no flapwise responses. Al-
though if these platform motions are superimposed on a nonzero mean pitch angle then it is
possible to excite a blade response, these responses are not shown here.

In summary, the blade response contains harmonics at various frequencies. Table 2 shows
the most important harmonics present in the response to each type of motion.

4. Conditions leading to resonance and non-linearity

The results presented in Section 3 give a detailed picture of the variety of linear and non-
linear harmonics generated in the blade response to different platform motions, but it is difficult
to see the bigger picture of when these are important. The presence of these harmonics has two
effects: (1) with multiple harmonics, there are more conditions which can excite large resonant
responses; and (2) with non-linear harmonics, the overall response is non-linear to some extent.
The results from Section 3 are now summarised to show these effects.

4.1. Conditions leading to large blade responses
The resonant behaviour seen in the surge response in Figure 9 is unsurprising: the largest

response happens when the platform motion forcing frequency approaches the blade natural fre-
quency ωf = 0.68Hz. What might be more surprising are the responses to other motions, when
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Table 2: Summary of the harmonic content of the main responses.  Linear, # Non-linear

0 + . . . ω + . . . 2ω + . . .

Motion Response Ω 2Ω −Ω 0 Ω −2Ω −Ω 0 +Ω +2Ω

Surge flapwise  
Pitch flapwise    
Yaw flapwise   
Sway edgewise   
Heave edgewise   
Roll edgewise #    # #
Pitch edgewise # # # # # #
Yaw edgewise # # #

certain combinations of platform frequency and rotor speed can excite resonance as additional
harmonics coincide with the blade natural frequency.

Figure 16 shows the total blade response variance plotted against the platform motion fre-
quency ω and the rotor speed Ω. Resonances are expected around the lines ω = (p − bΩ)/a,
where a and b are integers defining the harmonics that appear for each type of motion (Table 2)
and p is the natural frequency of the blade, including centrifugal stiffening for flapwise motion.

Of the flapwise responses (Figure 16 a-c), surge motion causes the simplest response. Since
the only forcing is at the platform frequency ω (see also Figure 9 above), the response is simply
increasing towards the blade natural frequency, located off the top of the plots. For yaw motion,
the forcing is atω±Ω (Figure 11). Therefore for the same platform frequency and rotor speed, the
forcing frequency due to yaw motion is higher than the forcing frequency due to surge motion,
and resonance is reached in the top-right corner of Figure 16c. Pitching motion is effectively a
combination of surging and yawing motions, which is reflected in the results for pitching motion
in Figure 16b.

The edgewise natural frequency of the blade is higher than the flapwise frequency, so the
blade is further from resonance and the edgewise responses in Figure 16(d-g) are smaller than
the flapwise responses in Figure 16(a-c). Additional resonances are visible, excited by higher
harmonics in the forcing: for example, at 2ω + Ω and 2ω + 2Ω, as marked on the plots. These
smaller resonances are the only features visible in the edgewise responses to pitch and yaw
motion (Figure 16 f-g). The responses to heave and roll motion (Figure 16 d-e) are larger overall
due to forcing around ω. As before, the results for sway are the same as for heave and are not
shown.

In summary, a general increase in response variance with increasing platform frequency ω
is observed, as the forcing frequencies approach the blade natural frequencies. For the present
reference turbine blade, the frequency of platform motion is always below the natural frequency
of the blade, but there may be a risk that in future more flexible blades would lead to a greater
response at lower frequencies. In addition, there are particular combinations of ω and Ω which
lead to additional resonances (Table 3). These are due to non-linear harmonics in the inertial
forcing coinciding with the blade natural frequency.

4.2. Linearity of blade response

The level of non-linearity in the blade response to platformmotion is important for modelling
the whole floating wind turbine system in the frequency domain. The results of Section 3 show
that some components of the response are linear, and some non-linear, so the overall linearity of
the blade response varies as the balance of different harmonic components shifts. Here overall
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Figure 16: Blade response variance due to different platform motions.
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Table 3: Local resonances (up to 0.4 Hz).

Motion Response 2ω+Ω 2ω+2Ω

Sway edgewise  
Heave edgewise  
Roll edgewise   
Pitch edgewise   
Yaw edgewise  
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Figure 17: Critical motion amplitude for non-linearity to exceed 5%.
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‘non-linearity’ is measured as

non-linearity(A) =
σ (A)/A

σ (A0)/A0

− 1 (14)

whereA is the amplitude of the platformmotion, σ (A) is the blade response standard deviation at
a given amplitude, andA0 is a small reference amplitude. The non-linearity is summarised by cal-
culating the ‘critical motion amplitude’, the smallest amplitude for which the non-linearity (14)
exceeds a certain value.

Figure 17 plots the critical motion amplitude against platform motion frequency and rotor
speed, for the flapwise response to surge, pitch and yaw, and the edgewise response to heave
and roll. In the majority of conditions the pale colour of the plots indicates that even the largest
amplitudes of platform motion considered were not enough to cause significant non-linear be-
haviour. In particular, this applies throughout the area where ω < 0.2Hz and Ω < 20 rpm.

There are specific combinations of platform frequency and rotor speed which lead to non-
linear behaviour at moderate or even small amplitudes. These are particularly noticeable in the
edgewise responses to heave (& sway) and roll motion. Note however that as the non-linearity
is defined as the relative change in the transfer function, an area with high non-linearity may be
irrelevant if the response there is small.

In the flapwise response to surge and pitch motion, increased non-linearity is visible at the
top of the plots, for higher ω. This is due to linear parts of the inertial loads exciting resonance
of the hinged blade and leading to large deflections. It is the large deflections which cause the
non-linear response here, and so this shows a limitation of the simplified model rather than an
exact result.

The edgewise response to pitch and yaw motion are not included in Figure 17 since these
responses are purely non-linear. However, they are both much smaller in magnitude than the
other responses.

5. Implications for linearised analysis of structural dynamics

There are two issues with modelling this inertial coupling within a linearised analysis: the
presence of multiple harmonics and non-linearity in the response.

The presence of multiple harmonics in the response of a rotating blade is well known, and
is typically addressed by applying a Multi-Blade Coordinate (MBC) or Coleman transformation
[15], in which the blade deflections are transformed into a non-rotating frame of reference. For
example, the flapwise deflection of blade k is expressed as

αk = a0 + a1 cosψk + b1 sinψk (15)

where for a three-bladed rotor ψk = Ωt + 2π (k − 1)/3, and a0, a1 and b1 are the ‘multi-blade
coordinates’. In this case a0 represents the average flapwise deflection across all three blades,
while a1 and b1 represent modes with a horizontal and vertical axis respectively. If the rotor is
isotropic, then components of the blade response related to the rotor speed are removed: if the
flapwise blade response αk contains harmonics at ω, ω − Ω and ω + Ω, then the transformed
coordinates a0, a1 and b1 contain only one harmonic, at ω. If the rotor is not perfectly isotropic,
the MBC transformation will reduce but not eliminate the additional harmonics in the response,
and the remaining periodicity is often simply neglected, or Floquet analysis can be used [23, 24].

The results in Figure 17 show that there is a large range of realistic conditions (rotor speeds
below 20 rpm and platform motion frequencies below 0.2Hz) where non-linearity in the blade
response is negligible. While the exact numbers depend on the geometry of the NREL 5MW
turbine used in the numerical calculations, the conclusions should apply to any similarly-scaled
floating wind turbine. Because the platform motions studied are prescribed across a grid of
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amplitudes and frequencies, rather than calculated from input wave and wind spectra, the results
are not tied to the specific spar-buoy floating platform used by the NREL turbine.

On the other hand, wind turbine scales and rotor speeds may change in the future. These
results show that with higher rotor speeds or more flexible blades the potential exists for multiple
resonant conditions and non-linear responses.

6. Implications for blade dynamics at model scale

Model-scale testing is commonly used in the design of offshore structures. Although the com-
plexity of floating wind turbines makes model testing difficult, a few tests have been performed
[25, 26, 27]. Compromises are usually involved because different effects scale differently: for
example, to model the wave loads correctly, the Froude number should be held constant be-
tween model and prototype scale, while to model the aerodynamic loads correctly, the Reynolds
number should be held constant. Both cannot be achieved simultaneously with a geometrically-
similar model, while also keeping the wind and wave forces in proportion [28].

Tests to date have focused on the dynamics of the floating platform, rather than the blades,
so the models used have had rigid blades. However, the results in this paper shed some light on
how dynamic effects might be observed in model-scale tests.

Dimensional analysis of the simplified blade model introduced in Section 2 shows that the
non-dimensional blade response depends on six non-dimensional numbers [22]:

α
β

}
= F

(
д

L0ω2
,

I1√
mI2
,
h

L0

,
Ω

ω
,
ωn

ω
, Ā

)
(16)

where ωn =
√
k/I2, the mass scale is M0 = m, the blade mass, the time scale is T0 = 1/ω,

and the length scale is L0 =
√
I2/m. The non-dimensional motion amplitude is Ā = A/L0 for

translational motion, and just the amplitude Ā = A for rotational motion. Since the response
depends only on these non-dimensional groups, as long as they are held constant between the
prototype and model scales then the blade dynamics should be modelled correctly.

Martin et al. [28] suggest that scaled models should match the wave Froude number, the
wind Froude number and the turbine Tip Speed Ratio TSR = ΩR/U . For a scaling factor λ, this
leads to the rotor speed scaling as λ−1/2. This would be consistent with scaled modelling of the
blade dynamics, which requires the rotor speed Ω to scale in proportion to the platform motion
frequency ω (Equation 16).

The blade natural frequency should also scale in proportion to the rotor speed and platform
motion frequency, but this may be difficult to achieve as the model blades must be very light; for
example the blades of the 1/50 scale NREL 5MW turbine used by Martin et al. [28] are 1.23m
long but weigh only 140 g. In practice, model tests have used stiff blades [27] and the blade
dynamics have not been considered. This means the ratio ωn/ω is too high. In Figure 16, the
response will be towards the bottom of the plot, and non-linear parts of the response will be
underestimated.

The mass distribution of the blades should be scaled to match the groups involving the first
and second moments of mass in Equation (16). This would be achieved through geometric
scaling and matching densities, but the scale blades are likely to have different construction.
For example the aerodynamic profiles of the blade may be redesigned to deal with the lower
Reynolds numbers experienced at model scale [28].

7. Conclusions

In this paper the dynamic response of a flexible wind turbine blade to prescribed motion of
a floating platform has been systematically evaluated, for a broad range of frequencies, ampli-
tudes and rotor speeds. The response contains many linear and non-linear harmonics, with the
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potential to cause non-linearity and excite blade resonance from low-frequency platform mo-
tion, but these effects are negligible at sufficiently low rotor speeds and platform frequencies
(below 20 rpm and 0.2Hz). For a typical large offshore wind turbine, with a lower rotor speed
and significant platform motion at lower frequencies than this, structural non-linearity due to
platform motion should not be an issue. For the level of accuracy for which a linear structural
model is acceptable for a fixed-bottom wind trubine, a linear model should also be acceptable
for modelling the dynamics of a wind turbine on a floating platform.

This result therefore informs the modelling of floating wind turbines using approximate lin-
earised methods, by showing that the specific non-linear effect studied here is likely to be neg-
ligible. However, this is only one of several sources of non-linearity in a floating wind turbine,
all of which must be similarly understood. In other cases where it may not possible to neglect
non-linear effects completely, such as in the aerodynamic loads and control system behaviour
[10], linearised approximations can nonetheless prove useful provided their limits are well un-
derstood.
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Appendix A. Kinematics for platform pitching motion

Although in practice the equations of motion were derived for general platform motion using
a computer algebra system, the resulting equations are rather long and difficult to understand.
Rather than presenting the general equations, here the simpler case of platform pitching motion
is used to illustrate the procedure.

Appendix A.1. Coordinate systems

The model, shown in Figure 2, is described by several coordinate systems, which in this case
are related as follows:

1. A fixed coordinate system I JK .

2. Rotation of I JK through an angle φ about the J axis gives the platform coordinate system
ijk.

3. Rotation of ijk through an angle θ about the i axis gives the blade root coordinate system
abc. The rotor axis is located at a height h.

4. For flapwise and edgewise deflections respectively:

(a) Rotation of abc through an angle α about the b axis gives the blade-fixed coordinate
systemmnp, wheren = b. This rotation represents the blade flexibility in the flapwise
direction.

(b) Rotation of abc through an angle β about the a axis gives the blade-fixed coordi-
nate systemmnp, wherem = a. This rotation represents the blade flexibility in the
edgewise direction.

The turbine unit vectors and their derivatives are related to the fixed unit vectors as follows:

i = I cosφ −K sinφ i̇ = −φ̇k (A.1a)

j = J j̇ = 0 (A.1b)

k = K cosφ + I sinφ k̇ = φ̇i (A.1c)

The rotor unit vectors and their derivatives are related to the turbine unit vectors as follows:

a = i ȧ = −φ̇k (A.2a)

b = j cosθ + k sinθ ḃ = θ̇c + φ̇ sinθi (A.2b)

c = −j sinθ + k cosθ ċ = −θ̇b + φ̇ cosθi (A.2c)

For flapwise deflections, the blade unit vectors are related to the rotor unit vectors as follows:

m = −c sinα + a cosα ṁ = −α̇p − φ̇ cosαk (A.3a)

+ sinα
(
θ̇b − φ̇ cosθi

)
n = b ṅ = θ̇c + φ̇ sinθi (A.3b)

p = c cosα + a sinα ṗ = α̇m − φ̇ sinαk (A.3c)

− cosα
(
θ̇b − φ̇ cosθi

)
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while for edgewise deflections,

m = a ṁ = −φ̇k (A.4a)

n = b cos β + c sin β ṅ = β̇p + cos β
(
θ̇c + φ̇ sinθi

)
(A.4b)

+ sin β
(
−θ̇b + φ̇ cosθi

)
p = c cos β − b sin β ṗ = −β̇n + cos β

(
−θ̇b + φ̇ cosθi

)
(A.4c)

+ sin β
(
θ̇c + φ̇ sinθi

)
Appendix A.2. Blade kinematics

The position of an arbitrary point on the blade (at radius r) is

r = hk + rp (A.5)

By differentiating this, and using the coordinate system relationships above, the velocity is found
to be

ṙ = φ̇ (h + r cosα cosθ) i − rφ̇ sinαk − r θ̇ cosαb + r α̇m (A.6a)

for flapwise deflections, and

ṙ = φ̇ (h + r cos β cosθ − r sin β sinθ) i − r
(
θ̇ + β̇

)
n (A.6b)

for edgewise deflections. To find the kinetic energy, the speed is needed. The relevant dot
products to evaluate ṙ · ṙ can be found from equations (A.1)–(A.4). For flapwise deflections, the
only non-zero products are

i ·m = cosα k ·m = − sinα cosθ k · b = sinθ (A.7)

while for edgewise deflections, i · n = 0. The speed squared is therefore

ṙ · ṙ =
[
(h + r cosα cosθ)2 + (r sinα)2

]
φ̇2 + (r cosα)2 θ̇2 + r2α̇2

+ 2r α̇φ̇ (h cosα + r cosθ) + r2φ̇θ̇ sin 2α sinθ (A.8a)

for flapwise deflections, and

ṙ · ṙ = (h + r cos β cosθ − r sin β sinθ)2 φ̇2 + r2
(
θ̇ + β̇

)2
(A.8b)

for edgewise deflections.
To find the potential energy, the height of an arbitrary point on the blade is also needed.

From Equation (A.5),

H = r · K = h cosφ + r (cosα cosθ cosφ − sinα sinθ) (A.9a)

for flapwise deflections, and

H = r · K = h cosφ + r cosφ (cos β cosθ − sin β sinθ) (A.9b)

for edgewise deflections.
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Appendix A.3. Kinetic and potential energy
The kinetic energy of the blade is given by

T =
1

2

∫
(r · r ) dm (A.10)

Substituting the expressions for the speed at radius r from Equations (A.8) gives

2T =
[
Mh2 + 2hI1 cosα cosθ + I2 cos

2 α cos2 θ + I2 sin
2 α

]
φ̇2

+ I2 cos
2 αθ̇2 + I2α̇

2 + 2α̇φ̇ (hI1 cosα + I2 cosθ) + I2φ̇θ̇ sin 2α sinθ (A.11a)

for flapwise deflections, and

2T =
[
Mh2 + 2hI1 (cos β cosθ − sin β sinθ)

+ I2 (cos β cosθ − sin β sinθ)2
]
φ̇2 + I2

[
θ̇ + β̇

]2
(A.11b)

for edgewise deflections, where M is the blade’s mass, and I1 and I2 are its first and second
moments of mass, defined as

M =

∫
dm (A.12a)

I1 =

∫
r dm (A.12b)

I2 =

∫
r2 dm (A.12c)

The potential energy is

V =
1

2
kf α

2 +Mдh cosφ + I1д (cosα cosφ cosθ − sinα sinφ) (A.13a)

for flapwise deflections, and

V =
1

2
keβ

2 +Mдh cosφ + I1д cosφ (cos β cosθ − sin β sinθ) (A.13b)

for edgewise deflections, and the stiffness of the blade hinge is kf and ke in the flapwise and
edgewise directions respectively.

Appendix A.4. Full equation of motion
The kinetic and potential energies lead to the equation of motion through Lagrange’s equa-

tion:

d
dt

[
∂T

∂α̇

]
− ∂T
∂α

+
∂V

∂α
= Qα (A.14)

For the blade flapwise response to platform pitch motion, these terms are:

∂T

∂α̇
= I2α̇ + φ̇ (I1h cosα + I2 cosθ) (A.15a)

d
dt

[
∂T

∂α̇

]
= I2α̈ + φ̈ (I1h cosα + I2 cosθ) − φ̇

(
I1hα̇ sinα + I2θ̇ sinθ

)
(A.15b)

∂T

∂α
= φ̇2

(
I2 cosα

(
1 − cos2 θ

)
− I1h cosθ

)
sinα

+ φ̇
(
I2θ̇ sinθ cos 2α − I1hα̇ sinα

)
− I2θ̇

2 sinα cosα (A.15c)

∂V

∂α
= kα − I1д (sinα cosφ cosθ + cosα sinφ) (A.15d)

Q = 0 (A.15e)
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Substituting these into Equation (A.14) leads directly to the equation of motion. The equation
of motion for the edgewise response is derived in exactly the same way, but for brevity is not
written in full. All the equations of motion, assuming harmonic motion of the platform, are given
in Appendix Appendix B below.

Appendix A.5. Small-angle equation of motion

Some simplifications can be introduced to allow for further analysis. The rotor speed is
assumed constant with Ω = θ̇ . The flap angle will be assumed to be small, such that sinα ≈ α
and cosα ≈ 1. This is reasonable because the flap angle is a simplified model of the blade’s
flexibility which is only realistic for small deflections. The potential energy (A.13) contains
the terms sinφ and cosφ, but the platform motion φ is assumed to be small, so sinφ ≈ φ and
cosφ ≈ 1. Finally, a factor of I2 is removed and the ratio λ = I1/I2 is introduced. With these
simplifications, the terms in (A.15) become

d
dt

[
∂T

∂α̇

]
= α̈ + φ̈ (λh + cosθ) − φ̇ (λhα̇α + Ω sinθ) (A.16a)

∂T

∂α
=

(
φ̇2

(
1 − cos2 θ − λh cosθ

)
− λhφ̇α̇ − Ω2

)
α + φ̇Ω sinθ (A.16b)

∂V

∂α
= ω2

f α − λд (α cosθ + φ) (A.16c)

where ω2
f = k/I2 is the natural frequency of the blade. Substituting into Equation (A.14) shows

the simplified equation of motion for the blade flap motion to be

α̈ +

[
ω2
f + Ω2 + φ̇2

(
λh cosθ +

1

2
cos 2θ − 1

2

)
− λд cosθ

]
α =

λдφ + 2φ̇Ω sinθ − φ̈ (λh + cosθ) (A.17)

All the simplified equations of motion are given in Appendix Appendix C below.

Appendix B. Full equations of motion

For the particular case of harmonic platform motion, with amplitude A and frequency ω,
the results are presented below. In total there are 12 equations of motion, for the flapwise and
edgewise responses to the 6 types of platform motion (Figure 1). The equations were derived
as shown in the example given in Appendix A, but making use of the SymPy symbolic algebra
package [29], and the results are listed below. ωf =

√
kf /I2 and ωe =

√
ke/I2 are the flapwise

and edgewise natural frequencies respectively, and λ = I1/I2 is the ratio of first and second
moments of mass of the blade. The rotor speed Ω is assumed constant so θ(t) = Ωt .

Surge
Flapwise:

−Aλω2 sinωt cosα + Ω2 sinα cosα − дλ sinα cosΩt + ω2
f α + α̈ = 0 (B.1)

Edgewise:
− дλ sinΩt cos β − дλ sin β cosΩt + ω2

e β + β̈ = 0 (B.2)

Sway
Platform sway motion, as an in-plane translation of the rotor, is similar to heave motion and
yields the same equations as given below.
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Heave
Flapwise:

Aλω2 sinωt sinα cosΩt + Ω2 sinα cosα − дλ sinα cosΩt + ω2
f α + α̈ = 0 (B.3)

Edgewise:

Aλω2 sinΩt sinωt cos β +Aλω2 sinωt sin β cosΩt

− дλ sinΩt cos β − дλ sin β cosΩt + ω2
e β + β̈ = 0 (B.4)

Roll
Flapwise:

A2hλω2 sinα cosΩt cos2ωt +A2ω2 sinα cos2ωt cosα

+ 2AΩω sinα cosωt cosα +Ahλω2 sinΩt sinωt sinα

+ Ω2 sinα cosα + дλ sin (A sinωt) sinΩt sinα

− дλ sinα cos (A sinωt) cosΩt + ω2
f α + α̈ = 0 (B.5)

Edgewise:

A2hλω2 sinΩt cos2ωt cos β +A2hλω2 sin β cosΩt cos2ωt

+Ahλω2 sinΩt sinωt sin β −Ahλω2 sinωt cosΩt cos β

−Aω2 sinωt + дλ sin (A sinωt) sinΩt sin β

− дλ sin (A sinωt) cosΩt cos β − дλ sinΩt cos (A sinωt) cos β

− дλ sin β cos (A sinωt) cosΩt + ω2
e β + β̈ = 0 (B.6)

Pitch
Flapwise:

A2hλω2 sinα cosΩt cos2ωt +A2ω2 sinα cos2 Ωt cos2ωt cosα

−A2ω2 sinα cos2ωt cosα − 2AΩω sinΩt cosωt cos2 α

−Ahλω2 sinωt cosα −Aω2 sinωt cosΩt + Ω2 sinα cosα

− дλ sin (A sinωt) cosα − дλ sinα cos (A sinωt) cosΩt

+ ω2
f α + α̈ = 0 (B.7)

Edgewise:

A2hλω2 sinΩt cos2ωt cos β +A2hλω2 sin β cosΩt cos2ωt

−A2ω2 sin2 Ωt sin β cos2ωt cos β −A2ω2 sinΩt sin2 β cosΩt cos2ωt

+A2ω2 sinΩt cosΩt cos2ωt cos2 β +A2ω2 sin β cos2 Ωt cos2ωt cos β

− дλ sinΩt cos (A sinωt) cos β − дλ sin β cos (A sinωt) cosΩt

+ ω2
e β + β̈ = 0 (B.8)

Yaw
Flapwise:

A2ω2 sin2 Ωt sinα cos2ωt cosα −A2ω2 sinα cos2ωt cosα

+ 2AΩω cosΩt cosωt cos2 α −Aω2 sinΩt sinωt + Ω2 sinα cosα

− дλ sinα cosΩt + ω2
f α + α̈ = 0 (B.9)
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Edgewise:

A2ω2 sin2 Ωt sin β cos2ωt cos β +A2ω2 sinΩt sin2 β cosΩt cos2ωt

−A2ω2 sinΩt cosΩt cos2ωt cos2 β −A2ω2 sin β cos2 Ωt cos2ωt cos β

− дλ sinΩt cos β − дλ sin β cosΩt

+ ω2
e β + β̈ = 0 (B.10)

Appendix C. Small-angle equations of motion

Below, the equivalent simplified equations are presented for other types of platform motion.
A parametric excitation term due to gravity, visible on the left-hand side of Equation (2), has
been neglected since (p2

f /λд) ≫ 1 for the blade of the reference wind turbine (the NREL 5MW).
For brevity, the notation is introduced that

sin+(A ± B) = sin(A+ B) + sin(A − B) (C.1a)

sin−(A ± B) = sin(A+ B) − sin(A − B) (C.1b)

and the equivalent for cos; the terms are written in this expanded form to make the frequency
content of the responses explicit. This leads to the following equations:
Surge:

α̈ + p2
f α = Aλω2 sinωt (C.2a)

β̈ + p2
eβ = дλ sinΩt (C.2b)

Sway: see results for heave below, as before.
Heave:

α̈ + p2
f α = −Aλ

2
ω2α sin−(ω ± Ω)t (C.3a)

β̈ + p2
eβ =

Aλ

2
ω2

[
cos−(ω ± Ω)t − β sin−(ω ± Ω)t

]
+ дλ sinΩt (C.3b)

Roll:

α̈ + p2
f α = α

(
Aω

2

) [
−4Ω cosωt + λ(д + hω2) cos−(ω ± Ω)t

]
− α

(
Aω

2

)2 [
2 + 2 cos 2ωt + 2hλ cosΩt

+ hλ cos+(2ω ± Ω)t

]
(C.4a)

β̈ + p2
eβ = дλ sinΩt +Aω2 sinωt

+
Aλ

2

(
д + hω2

) [
sin−(ω ± Ω)t + β cos−(ω ± Ω)t

]
−
(
Aω

2

)2
hλ

[
sin−(2ω ± Ω)t + β cos+(2ω ± Ω)t

+ 2 sinΩt + 2β cosΩt

]
(C.4b)
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Pitch:

α̈ + p2
f α = Aλ

(
д + hω2

)
sinωt

+

(
Aω

2

) [
(ω + 2Ω) sin(ω + Ω)t + (ω − 2Ω) sin(ω − Ω)t

]
− α

(
Aω

2

)2 [
2λh cosΩt + λh cos+(2ω ± Ω)t

+ cos 2Ωt +
1

2
cos+(2ω ± 2Ω)t

− 1 − cos 2ωt

]
(C.5a)

β̈ + p2
eβ = дλ sin(Ωt)

−
(
Aω

2

)2 {
2hλ

[
sinΩt + β cosΩt

]
+

[
sin 2Ωt + 2β cos 2Ωt

]
+ hλ

[
sin−(2ω ± Ω)t + β cos+(2ω ± Ω)t

]
+

1

2
sin−(2ω ± 2Ω)t + β cos+(2ω ± 2Ω)t

}
(C.5b)

Yaw:

α̈ + p2
f α = −

(
Aω

2

) [
(ω + 2Ω) cos(ω + Ω)t − (ω − 2Ω) cos(ω − Ω)t

]
+ α

(
Aω

2

)2 [
1 + cos 2Ωt + cos 2ωt +

1

2
cos+(2ω ± 2Ω)t

]
(C.6a)

β̈ + p2
eβ = дλ sinΩt

+

(
Aω

2

)2 [
1

2
sin−(2ω ± 2Ω)t + β cos+(2ω ± 2Ω)t

+ sin 2Ωt + 2β cos 2Ωt

]
(C.6b)
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